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A form of the linear mixing rule involving the equality of excess pressures is tested with various mole
fractions and various types of orbital-free molecular dynamics simulations. For all the cases considered, this
mixing rule yields, within statistical error, the pressure of a mixture of helium and iron obtained by a direct
simulation. In an attempt to interpret the robustness of the mixing rule, we show that it can be derived from
thermodynamic stability if the system is regarded as a mixture of independent effective average atoms. The
success of the mixing rule applied with equations of state including various degrees of approximation leads us
to suggest its use in the thermodynamic domain where quantum molecular dynamics can be implemented.
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I. INTRODUCTION

In various cases of practical interest, it is important to
know the equation of state of mixtures in the warm dense
matter �WDM� regime characterized by strong coupling and
a high electronic degeneracy. This is the case for instance
when one wants to calculate the speed of sound in giant
planets interiors or in mixtures resulting from the implosion
of pellets in inertial confinement fusion. The WDM regime is
difficult to describe because, even for a pure phase, the sys-
tem consists of a variety of particles �electrons, ions, atoms,
and clusters� that continuously interact and evolve. The
equations of state �EOS� generally applied to such systems
are computationally expensive and, when used in hydro-
codes, must be tabulated. When mixtures are considered,
there is in fact one EOS for each possible distribution of
mole fractions; the use of a mixing rule, which provides
prescriptions for determining the EOS of a mixture from the
EOS of the pure phases, is therefore necessary. The aim of
this study is to propose such a mixing rule and to test it with
various EOS based on both density-functional theory and
molecular dynamics.

In view of the complexity of the WDM regime, the sys-
tem is generally regarded as a mixture of electrons and nu-
clei; the adiabatic approximation, which postulates that elec-
trons instantaneously respond to the displacement of nuclei,
is assumed and allows to treat electrons and nuclei sepa-
rately. In the one-component �OCP� model, the ions are re-
garded as point charges and the electrons are assumed to
form a uniform and rigid continuum �1�. This model was
generalized to mixtures by Hansen et al. �2� who found that
the linear mixing rule �LMR, stating that the excess free
energy at constant temperature and charge density is a linear
interpolation between the excess free energies of the respec-
tive pure phases� is accurate for strong coupling and moder-
ate nuclei-charge ratios; DeWitt et al. �3� confirmed this re-
sult for larger nuclei-charge ratios when the nuclei are treated
with hypernetted-chain �HNC� calculations. Chabrier and
Ashcroft �4� assume that a binary mixture can be viewed as a

superposition of a uniform electronic background and a
screened binary ionic fluid characterized by an effective
ionic Hamiltonian depending on the dielectric function; with
a HNC treatment of the nuclei, they also find that the linear
mixing rule gives good results. Rosenfeld �5� proposes a
nonlinear mixing rule for mixtures of charged particles inter-
acting through the Yukawa repulsive potential and, within the
HNC approximation, finds it very accurate for a wide range
of charge ratios and coupling parameters.

The above approaches involve assumptions about the
electronic density or the interactions among nuclei. No such
assumption is necessary if the EOS is addressed with first-
principles calculations that treat the system as a mixture of
electrons and nuclei interacting through Coulombic interac-
tions. In such calculations, the adiabatic approximation is
still assumed so that the EOS can be calculated by classical
molecular-dynamics simulations of nuclei interacting
through forces that can be computed, for each nuclear con-
figuration, from electronic density. It is then possible to con-
sistently combine density-functional theory applied to the
calculation of electronic density �6,7� and classical molecular
dynamics applied to nuclei. Various density-functional meth-
ods can be implemented according to the approximation cho-
sen for the electronic free energy and for the exchange-
correlation functional. The Kohn-Sham method �6,7�, in
which electrons receive a full quantum treatment, gives rise
to quantum molecular dynamics �QMD�; if the exchange-
correlation functional is assumed to be known, QMD yields
first-principles calculations of transport coefficients and ther-
modynamic properties �8–11�. In the framework of QMD,
Horner et al. �12� recently compared two mixing rules ap-
plied to lithium hydride and found that the mixing rule based
on total-pressure matching gives superior results for the cal-
culation of pressure; the excess pressure obtained can never-
theless differ from the exact one by 20%. In practice, QMD
cannot be implemented at high temperature and/or high den-
sity where it gets too computationally expensive. For suffi-
ciently high density and/or temperature, it is possible to cal-
culate the electronic density with the Thomas-Fermi-Dirac
�TFD� method in which electrons are no longer described by
orbitals but by a free-energy functional depending only on
the local electronic density; there is then no need to compute*Corresponding author; luc.kazandjian@cea.fr
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one-electron quantum states and this method is said to be
orbital-free. The TFD method has been used, in combination
with molecular dynamics, to determine properties of warm
dense plasmas �13–17�; a practical advantage of TFD mo-
lecular dynamics �TFDMD� is that it is sufficiently compu-
tationally cheap that it can be used at high temperature
and/or high density where QMD cannot in general be imple-
mented. The Thomas-Fermi-Dirac-Weizsäcker �TFDW�
method, another orbital-free approach, extends the domain of
validity of the TFD method by taking into account the sec-
ond term of the gradient expansion of the electronic free
energy �the gradient correction� �18,19�; Thomas-Fermi-
Dirac-Weizsäcker molecular dynamics �TFDWMD� has been
implemented in Refs. �20–22�. TFDMD can be implemented
with no exchange-correlation functional; in this case, the
method is designated here by TFMD �for Thomas-Fermi mo-
lecular dynamics�. We therefore find ourselves with three
orbital-free approaches of the EOS, namely, TFMD,
TFDMD, and TFDWMD, each including more physics
�exchange-correlation functional and gradient correction�
and having a larger thermodynamic domain of validity than
the preceding. In the framework of TFDMD, a form of the
linear mixing rule based on excess-pressure matching, that
we call here excess-pressure matching rule �EPMR�, has
been tested mainly on an equimolar mixture of helium and
iron and found to be very accurate for the calculation of
pressure and internal energy in various thermodynamic con-
ditions of the WDM regime �23�.

In this paper, the EPMR is further explored by consider-
ing various mole fractions and EOS. In Sec. II, the EPMR is
tested with TFDMD on a mixture with various mole frac-
tions of 4He �atomic mass=4.0026 g.mol−1� and 56Fe
�atomic mass=55.395 g.mol−1�. In Sec. III, the EPMR is
tested on an equimolar mixture of helium and iron with
TFMD, TFDMD, and TFDWMD. In Sec. IV, the success of
the EPMR is interpreted, in terms of an average atom model,
as a consequence of thermodynamic stability. Suggestions
for further use of the EPMR are discussed in the conclusion.
The simulations by TFMD, TFDMD, and TFDWMD are per-
formed with the electronic structure package ABINIT �24–26�.

II. VARIATION IN THE MOLE FRACTIONS

A. Molecular dynamics simulations

We first apply TFDMD to a mixture of helium and iron
with various mole fractions xHe and xFe and we use the pres-
sures obtained for the full mixture as a benchmark against
which to assess the EPMR. The system is constructed by
replication of a finite sample of N atoms in a basic cubic
reference cell. The dynamics of the nuclei is driven by the
nuclear Coulomb interactions and by an effective potential
equal to the electronic free energy; for given positions of the
nuclei and thermodynamic conditions, the electronic free en-
ergy is a functional of the electronic density whose value at
equilibrium is obtained by minimization with respect to the
electronic density under the constraint of charge neutrality.
Electronic density is expressed as an expansion on a periodic
plane-wave basis; the number of terms in this expansion is
chosen with the cutoff energy. The Coulombic electron-

nucleus interactions are replaced by regularized potentials
that are no longer Coulombic below a cutoff radius �one for
each type of nucleus�; the results found with such regularized
potentials are exact if they are obtained as a limit as the
cutoff radii are lowered. Nuclei are moved in the isokinetic
ensemble so that temperature is exactly known. The
exchange-correlation functional is chosen to be the local-
density approximation of Perdew and Zunger �27�. Other de-
tails about the formalism can be found in Refs. �17,22,23�.

Besides the cutoff energy and the cutoff radii, the main
numerical parameters intervening in the computation of pres-
sure are the convergence parameter for the calculation of
electronic density, the time step �t used to displace the nu-
clei, the number Ntime of time steps used to compute averages
over time, and the number N of nuclei in the basic reference
cell. All parameters are in principle determined by a system-
atic search for numerical convergence of pressure within sta-
tistical error. But convenient rules of thumb for the choice of
the cutoff radii, the cutoff energy, and the time step, given in
Refs. �17,23�, can be used. All computations have been car-
ried out with Ntime=2000.

We now describe how the statistical error, i.e., the stan-
dard deviation of pressure, is calculated. A relaxation-time �R
for pressure, beyond which serial correlations are disrupted,
is estimated from the correlation coefficient for pressure �see
chapter 2 of Ref. �28��. In order to avoid serial correlations,
the computed trajectory is divided into m segments, of length
�R, of consecutive time steps. For each segment, a pressure is
calculated as the average of the pressures obtained at each
time step. The final result P is the average of these m pres-
sures regarded as uncorrelated; the standard deviation �P of
pressure is therefore taken equal to �28�

�P =
1

m1/2� 1

m − 1�
�=1

m

�P − P��2�1/2

, �1�

where P� is the average pressure obtained for segment �.
In Fig. 1, we illustrate the convergence of pressure with

respect to N for xFe=0.01; it appears that numerical conver-
gence �within statistical error� of excess pressure is obtained
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FIG. 1. TFDMD applied to a binary mixture of helium and iron
at density �=10 g /cm3 and temperature T=50 eV. The mole frac-
tions are xFe=0.01 and xHe=0.99. Numerical convergence of
excess-pressure Pex with respect to the number N of atoms in the
basic reference cell. Vertical bars represent standard deviations.
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with only one atom of iron in the reference cell. This may
seem surprising but one should keep in mind that the basic
reference cell is infinitely replicated so that an infinite num-
ber of atoms is in fact considered. The result obtained is
nevertheless influenced by the artificial periodicity, depend-
ing on N, introduced in the description of the system. In the
case xFe=0.01, as shown in Fig. 1, this periodicity effect
cannot be distinguished from statistical uncertainty even with
a single atom of Fe in the reference cell. For xFe=0.5, the
convergence of pressure with respect to N is illustrated in
Fig. 2 where it appears that N=30 is a suitable choice. More
generally in the present work, the values of N retained for
computation are such that the periodicity effect cannot be
distinguished from statistical uncertainty.

B. Results

We define the excess pressure of a system by

Pex = P − nkT , �2�

where P is the total pressure, k is the Boltzmann constant,
and n is the number of nuclei per unit volume.

With TFDMD, we calculate the excess pressure of a mix-
ture of helium and iron at density �=10 g /cm3 and tempera-
ture T=50 eV for various mole fractions; the results ob-
tained are given in Fig. 3 and in Table I. It is worthy of note
that changing xFe from 0 to 0.02 lowers the excess pressure
by 17%. This variation can be interpreted with the EPMR in
assuming that the excess pressure of the pure phases behaves
as the electronic pressure in the average atom model �29�
�treated with the TFD method in the present case�. With the
EPMR �23� applied to a mixture of helium and iron, the
partial atomic volumes vHe and vFe are defined by

xHevHe + xFevFe =
1

�
�xHeAHe + xFeAFe� , �3�

Pex,He�vHe,T� = Pex,Fe�vFe,T� , �4�

where AHe and AFe are the atomic masses of helium and iron,
and Pex,��v ,T� is the excess pressure of a pure phase of �

with an atomic volume v at temperature T. The excess pres-
sure of the mixture is then the common value of Pex,He and
Pex,Fe in Eq. �4�. It is assumed that there is a one-to-one
relationship between atomic volume and pressure in Eq. �4�
so that vHe and vFe are uniquely defined.

We first interpret the variation in excess pressure with
mole fractions. The additivity of partial atomic volumes ex-
pressed by Eq. �3� can be rewritten
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FIG. 2. TFDMD applied to an equimolar mixture of helium and
iron at density �=10 g /cm3 and temperature T=50 eV. Numerical
convergence of excess-pressure Pex with respect to the number N of
atoms in the basic reference cell. Vertical bars represent standard
deviations.
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FIG. 3. TFDMD applied to a binary mixture of helium and iron
at density �=10 g /cm3 and temperature T=50 eV. Excess-
pressure Pex vs the mole fraction of iron xFe. Standard deviations
are too small to be visible.

TABLE I. Excess pressure of a binary mixture of helium and
iron, at density �=10 g /cm3 and temperature T=50 eV, vs the
mole fractions. Pex is the excess pressure calculated by a TFDMD
simulation of the full mixture. Pex

EPMR is the excess pressure calcu-
lated from the pure phases with TFDMD and the EPMR.

xHe

�%�
xFe

�%�
Pex

�Mbar�
Pex

EPMR

�Mbar�

100.0 0 0 211.17 �2.1�10−1�
99.5 0.5 200.87 �1.0�10−1� 200.54 �1.9�10−1�
99.0 1.0 192.08 �1.4�10−1� 191.49 �1.5�10−1�
98.0 2.0 176.49 �2.0�10−1� 176.04 �1.8�10−1�
96.0 4.0 154.02 �1.4�10−1� 153.63 �1.2�10−1�
94.0 6.0 139.02 �1.2�10−1� 138.22 �1.2�10−1�
92.0 8.0 127.41 �1.7�10−1� 126.76 �1.0�10−1�
90.0 10.0 118.43 �1.1�10−1� 117.91 �1.3�10−1�
85.0 15.0 103.29 �1.1�10−1� 102.72 �1.0�10−1�
80.0 20.0 93.686 �9.5�10−2� 93.081 �8.8�10−2�
70.0 30.0 81.965 �9.1�10−2� 81.507 �5.5�10−2�
60.0 40.0 75.141 �6.1�10−2� 74.864 �7.0�10−2�
50.0 50.0 70.699 �6.9�10−2� 70.496 �4.0�10−2�
40.0 60.0 67.574 �5.2�10−2� 67.437 �4.6�10−2�
30.0 70.0 65.230 �4.0�10−2� 65.149 �4.4�10−2�
20.0 80.0 63.505 �4.3�10−2� 63.367 �5.0�10−2�
10.0 90.0 62.007 �2.7�10−2� 61.992 �5.2�10−2�

0.0 100.0 60.851 �3.0�10−2�
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vHe −
AHe

�
=

xFe

1 − xFe
�AFe

�
− vFe	 . �5�

Equation �5� shows that either AFe /vFe���AHe /vHe or
AFe /vFe	�	AHe /vHe. Since Pex,� is assumed to behave as
the electronic pressure in the average atom model �treated in
the TFD approach�, it is determined by the superficial elec-
tronic density. In the limit of very high densities, electronic
density is essentially homogeneous so that Eq. �4� implies
ZHe /vHe=ZFe /vFe, where ZHe and ZFe are the atomic numbers
of helium and iron. In general, with ZFe
ZHe, it is more
difficult to ionize iron than helium so that the equality of
electronic pressures, equivalent �in the average atom model�
to the equality of superficial electronic densities, implies a
larger average electronic density for iron, that is ZHe /vHe
	ZFe /vFe. As the atomic numbers and atomic masses are
nearly proportional, this condition implies AHe /vHe
	AFe /vFe; we therefore find ourselves in the situation where
AFe /vFe���AHe /vHe. As, in pure helium, vHe is obviously
equal to AHe /�, adding iron into pure helium results in an
increase of vHe and therefore in a decrease in the superficial
electronic density and in the electronic pressure determined
by Eq. �4�. A similar interpretation allows to explain why
adding helium into pure iron results in an increase in excess
pressure.

We still have to interpret the rate of variation in excess
pressure with respect to mole fractions. When iron is added
into pure helium, Eq. �5� shows that the atomic volume
AHe /� of pure helium differs from vHe by the product of a
factor close to xFe �say, if xFe�1� and of a factor on the order
of AFe /�; as AFe /�
AHe /�, the rate of variation of vHe, and
therefore of excess pressure, with respect to xFe is large. Con-
versely, when helium is added into pure iron, this rate is
small. It must be noted, however, that the rate of variation in
excess pressure with respect to mole fractions depends on the
thermodynamic conditions; indeed, in the limit of high den-
sities where the equality of excess pressures implies
ZHe /vHe=ZFe /vFe, Eq. �5� shows that, as AFe /AHe
ZFe /ZHe,
vHe, and vFe remain close to AHe /� and AFe /� so that excess
pressure varies little with mole fractions.

The excess pressures obtained by a direct simulation of
the full mixture of helium and iron are the benchmark
against which the excess pressures given by the EPMR must
be tested. The results are indicated in Table I and a graphic
comparison is given in Fig. 4 �the error bars in this figure are
obtained by standard differentiation with all terms positive�.
In all cases, the results obtained with the EPMR agree with
the benchmark within statistical error.

III. USE OF VARIOUS EQUATIONS OF STATE

After testing the EPMR for a given EOS �TFDMD� and
various mole fractions in Sec. II, we now test it for an
equimolar mixture of helium and iron and three EOS result-
ing from an orbital-free approach, namely, TFMD, TFDMD,
and TFDWMD. The density is �=10 g /cm3 and the tem-
peratures are T=2, 5, 10, 20, 50, 100, 200, and 500 eV. As
shown in Fig. 5, this range of temperature allows us to ex-
plore gradual relative differences among the three EOS.

These relative differences continuously decrease when T in-
creases; this is because, when T gets larger at given density,
the kinetic energy of electrons increases and progressively
prevails over both exchange-correlation and the gradient cor-
rection.

A. Computational details

The formalism used and the choice of the numerical pa-
rameters are already presented in Sec. II A. We only address
specific points here. The same exchange-correlation func-
tional is used for TFDMD and for TFDWMD �by construc-
tion, there is none for TFMD�. In the TFDWMD approach,
the gradient correction of the electronic free energy is calcu-
lated according to the prescriptions of Perrot �29�. For
TFDWMD, we have noted that a computation does not nec-
essarily converge for any choice of cutoff radii; when it does,
however, it converges to the excess pressure sought. We
therefore choose, for TFDWMD, the largest cutoff radii that
allow convergence of the excess pressure. For the three EOS,
all calculations are carried out with Ntime=2000, N=30 for

0 20 40 60 80 100
-1.5

-1.0

-0.5

0.0

0.5

xFe (%)

P
E

P
M

R
e
x P

e
x

−
1

(%
)

FIG. 4. TFDMD applied to a binary mixture of helium and iron
with various mole fractions at density �=10 g /cm3 and tempera-
ture T=50 eV. Comparison of the excess pressures calculated by
the excess-pressure matching rule �Pex

EPMR� with the excess pres-
sures calculated by a direct simulation of the full mixture �Pex�.
Vertical bars represent standard deviations.
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mixtures �15 atoms of helium and 15 atoms of iron� or N
=32 for pure phases. Again, for these values of N and be-
yond, the effect of periodic boundary conditions cannot be
distinguished from statistical uncertainty �in the thermody-
namic conditions considered�.

B. Results

For each EOS, we examine the validity of the EPMR in
the thermodynamic conditions indicated above; again, the
benchmark against which to assess a result is the excess pres-
sure calculated by a direct simulation of the full mixture. We
present the excess pressures computed in Table II and on Fig.
6 �the error bars in this figure are obtained by standard dif-
ferentiation with all terms positive�. TFDWMD includes
more physics than TFDMD that includes more physics than
TFMD; these EOS may yield significantly different excess
pressures, at low temperature for instance. Whether this is
the case or not, it can be seen on Fig. 6 that, for each EOS
considered, all the excess pressures given by the EPMR
agree within statistical error with those given by a direct
simulation of the full mixture.

IV. DISCUSSION OF THE EXCESS-PRESSURE
MATCHING RULE

The EPMR turns out to yield excess pressures in remark-
able agreement with those obtained by direct simulation. We
now consider, at given mass density and temperature, a bi-
nary mixture of elements 1 and 2, with mole fractions x1 and
x2, and show that the EPMR is a consequence of thermody-
namic stability if it is assumed that the excess free energy
can be calculated as if the system was a mixture of indepen-
dent and identical �for a given type of nucleus� effective
average atoms occupying the mixture volume. Then, for
given mass density and temperature, there exist atomic vol-
umes v1 and v2 such that

x1v1 + x2v2 = v , �6�

fex = x1f1�v1,T� + x2f2�v2,T� , �7�

where v and fex are the volume and excess free energy �free
energy minus ideal contribution of the nuclei� per atom of
the mixture, and f i�vi ,T� is a function of vi and T whose only
parameters are the atomic number Zi and the atomic mass Ai
�i=1, or 2�. f i�vi ,T� can be regarded as the electronic free
energy in an effective average atom characterized by Zi and
Ai.

Thermodynamic stability implies that, at given v and T,
v1 and v2 must be such that the free energy per atom, and
therefore fex �the ideal contribution of the nuclei is indepen-
dent of v1 and v2�, is minimal. Minimizing fex expressed by
Eq. �7� under the constraint �6� yields

− � � f1

�v1
	

T

= − � � f2

�v2
	

T

, �8�

so that v1 and v2 are determined by Eqs. �6� and �8�.
With our assumptions, f1�v1 ,T� and f2�v2 ,T� are the ex-

cess free energies of the pure phases 1 and 2 with atomic
volumes v1 and v2. Equation �8� therefore expresses the
equality of the excess pressures of the pure elements. Finally,
v1 and v2 are determined by the prescriptions of the EPMR.
Once v1 and v2 are determined, the excess free energy is
calculated with Eq. �7� and the excess-pressure Pex is equal
to

Pex = − � � fex

�v
	

T,x1,x2

, �9�

that is, with Eqs. �7� and �8�,

Pex = − � � f1

�v1
	

T
�x1� �v1

�v 	
T,x1,x2

+ x2� �v2

�v 	
T,x1,x2

� ,

�10�

or, since v1 and v2 verify Eq. �6�,

Pex = − � � f1

�v1
	

T

. �11�

TABLE II. Excess pressure, Pex, of an equimolar mixture of helium and iron, at density �=10 g /cm3, vs temperature T. Pex is calculated
by TFMD, TFDMD, or TFDWMD. “exact” indicates a simulation of the full mixture and “EPMR” indicates a simulation with the EPMR.

T �eV�

Pex �Mbar�

TFMD TFDMD TFDWMD

exact EPMR exact EPMR exact EPMR

2 11.97 �1�10−2� 11.96 �1�10−2� 6.85 �1�10−2� 6.82 �2�10−2� 5.77 �1�10−2� 5.76 �1�10−2�
5 14.13 �2�10−2� 14.09 �2�10−2� 8.86 �2�10−2� 8.83 �2�10−2� 7.70 �2�10−2� 7.65 �2�10−2�

10 18.88 �3�10−2� 18.82 �4�10−2� 13.11 �3�10−2� 13.07 �3�10−2� 11.73 �3�10−2� 11.66 �3�10−2�
20 31.06 �4�10−2� 30.86 �4�10−2� 24.21 �4�10−2� 24.00 �4�10−2� 22.45 �4�10−2� 22.24 �4�10−2�
50 80.72 �5�10−2� 80.61 �6�10−2� 70.70 �7�10−2� 70.49 �6�10−2� 68.23 �6�10−2� 67.98 �6�10−2�

100 192.76 �7�10−2� 192.48 �8�10−2� 178.51 �6�10−2� 178.21 �8�10−2� 175.79 �7�10−2� 175.64 �8�10−2�
200 486.94 �1�10−1� 486.32 �1�10−1� 466.56 �9�10−2� 465.93 �2�10−1� 463.65 �2�10−1� 462.96 �3�10−1�
500 1640.7 �3�10−1� 1639.8 �5�10−1� 1611.6 �3�10−1� 1611.1 �5�10−1�
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Pex is the common value of the excess pressures of the
pure phases in Eq. �8� with v1 and v2 determined by Eqs. �6�
and �8�. Therefore, for a binary mixture of independent and
identical effective average atoms, the EPMR yields the exact

pressure. The above derivation can be easily extended to a
mixture with more than two components. More �30� pro-
poses the EPMR for a mixture of average atoms treated with
the TF method; the above derivation indicates that the EPMR
can also be applied if the average atoms are treated with any
other method �like TFD or TFDW for instance�.

The success of the EPMR can therefore be explained if,
for its thermodynamic properties, the system considered be-
haves as a mixture of independent and identical effective
average atoms. One is tempted to conjecture that this is the
case when the excess pressures of the pure phases are close
to the electronic pressures obtained with the average atom
model treated with the TF, TFD, or TFDW approach �29�.
But the EPMR is also successful when this is not so; we can
then only note that the system behaves as a mixture of inde-
pendent effective average atoms having the EOS of the pure
phases.

Finally, it can be noted that the law of volume additivity,
Eq. �6�, combined with the equality of the average electronic
densities for pure elements 1 and 2, gives the same partial
densities as those of the mixing rule of Hansen et al. �2�.
Thus, when the equality of excess pressures is equivalent to
the equality of average electronic densities, the EPMR be-
comes equivalent to that mixing rule; this occurs at very high
densities, for instance. The EPMR can therefore be regarded
as an extension of the mixing rule of Hansen et al.

V. CONCLUSION

We have applied three types of orbital-free molecular
dynamics simulations, namely, TFMD, TFDMD, and
TFDWMD, to the calculation of pressure in a mixture of
helium and iron. We have tested a mixing rule based on
excess-pressure matching, called EPMR, on this mixture for
various mole fractions and for the three approaches. For all
the cases considered, this mixing rule yields, within statisti-
cal error, the pressure obtained by a direct simulation of the
full mixture. This study, performed on an asymmetric mix-
ture �ZFe
ZHe�, complements that in Ref. �23�, where only a
variation in the thermodynamic conditions is explored, and
confirms the remarkable robustness of the EPMR.

In relation to TFMD, TFDMD includes exchange-
correlation �assumed to be known� and TFDWMD includes
both exchange-correlation and the gradient correction of the
electronic free energy. The success of the EPMR in thermo-
dynamic conditions where these three approaches, with vari-
ous physical contents, give significantly different pressures,
leads us to suggest the use of the EPMR with QMD �in
which the electronic free energy is calculated with a full
quantum treatment�.

It is possible to find a physical basis for the EPMR. We
have shown that it is a consequence of thermodynamic sta-
bility if the system is assumed to behave thermodynamically
as a mixture of independent and identical effective average
atoms whose EOS is that of the pure element.
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FIG. 6. Equimolar mixture of helium and iron at density �
=10 g /cm3 and various temperatures. The equation of state is ob-
tained with �a� �= TFMD, �b� �= TFDMD, and �c� �
=TFDWMD. Comparison of the excess-pressures Pex,�

EPMR calculated
by the excess-pressure matching rule with the excess-pressures
Pex,� calculated by a direct simulation of the full mixture. Vertical
bars represent standard deviations.
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